Confronting the Environmental Fallout due to Polyurethane Waste and Microplastic Pollution: Mini-review
DOI:
https://doi.org/10.22100/ijhs.v11i4.1291Keywords:
PU, MPs, Recycle, Plastic management, Environment, Energy recoveryAbstract
Background: Polyurethane plays a crucial role in waste management due to its wide range of applications and unique properties. Polyurethane waste is produced in large quantities, creating challenges for proper disposal. Inadequate disposal practices contribute to the release of polyurethane-derived microplastics through production, degradation, and wear processes, posing risks to soil, water, and air quality, as well as to ecological and human health. Despite increasing research, the environmental consequences of polyurethane waste and microplastic formation remain insufficiently synthesized, and existing management strategies are fragmented.
Methods: This mini-review systematically examines the environmental impacts of polyurethane waste and microplastic pollution by analyzing studies published up to January 2024 in international and Iranian databases. Emphasis is placed on identifying current management approaches, their effectiveness, and gaps in knowledge.
Results: Findings indicate that polyurethane wastes are highly persistent, amplifying their ecological footprint over time, and that recycling and recovery technologies remain limited in scope and efficiency. Few studies provide comprehensive evaluations of polyurethane-derived microplastic concentrations or their long-term hazards. The synthesis highlights the importance of innovative recycling methods, preventive measures, and public awareness initiatives as key strategies to mitigate impacts.
Conclusion: The recognition of the importance of polyurethane in waste management shows the need for concerted efforts to effectively address its environmental consequences. By clarifying existing knowledge gaps and future research priorities, this study provides a focused perspective for advancing sustainable alternatives and reducing the environmental burden of polyurethane.
References
Das A, Mahanwar P. A brief discussion on advances in polyurethane applications. Advanced Industrial and Engineering Polymer Research 2020;3(3):93-101. doi: 10.1016/j.aiepr.2020.07.002
Kemona A, Piotrowska M. Polyurethane recycling and disposal: Methods and prospects. Polymers 2020;12(8):1752. doi: 10.3390/polym12081752
Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Science advances 2017;3(7):e1700782. doi: 10.1126/sciadv.1700782
Sonnenschein MF. Polyurethanes: science, technology, markets, and trends. John Wiley & Sons; 2021. doi: 10.1002/9781119669401
Kiss G, Rusu G, Bandur G, Hulka I, Romecki D, Péter F. Advances in Low-Density Flexible Polyurethane Foams by Optimized Incorporation of High Amount of Recycled Polyol. Polymers 2021;13(11):1736. doi: 10.3390/polym13111736
Adetunji CO, Olaniyan OT, Anani OA, Inobeme A, Mathew JT. Environmental impact of polyurethane chemistry. Polyurethane Chemistry: Renewable Polyols and Isocyanates 2021:393-411. doi: 10.1021/bk-2021-1380.ch014
Yates J, Deeney M, Rolker HB, White H, Kalamatianou S, Kadiyala S. Effects of plastics in the food system on human health, food security, and the environment: a systematic scoping review. The Lancet Planetary Health 2021;5:S18. doi: 10.1016/S2542-5196(21)00102-9
Allemann MN, Tessman M, Reindel J, et al. Rapid biodegradation of microplastics generated from bio-based thermoplastic polyurethane. Scientific Reports 2024;14(1):6036. doi: 10.1038/s41598-024-56492-6
Coyle R, Hardiman G, O'Driscoll K. Microplastics in the marine environment: A review of their sources, distribution processes, uptake and exchange in ecosystems. Case Studies in Chemical and Environmental Engineering 2020;2:100010. doi: 10.1016/j.cscee.2020.100010
Jadhav EB, Sankhla MS, Bhat RA, Bhagat D. Microplastics from food packaging: An overview of human consumption, health threats, and alternative solutions. Environmental Nanotechnology, Monitoring & Management 2021;16:100608. doi: 10.1016/j.enmm.2021.100608
La Daana KK, Officer R, Lyashevska O, Thompson RC, O'Connor I. Microplastic abundance, distribution and composition along a latitudinal gradient in the Atlantic Ocean. Marine pollution bulletin 2017;115(1-2):307-314. doi: 10.1016/j.marpolbul.2016.12.025
Cózar A, Echevarría F, González-Gordillo JI, et al. Plastic debris in the open ocean. Proceedings of the National Academy of Sciences 2014;111(28):10239-10244. doi: 10.1073/pnas.1314705111
Banik J, Chakraborty D, Rizwan M, Shaik AH, Chandan MR. Review on disposal, recycling and management of waste polyurethane foams: a way ahead. Waste Management & Research 2023;41(6):1063-1080. doi: 10.1177/0734242X221146082
Liu J, He J, Xue R, et al. Biodegradation and up-cycling of polyurethanes: Progress, challenges, and prospects. Biotechnology advances 2021;48:107730. doi: 10.1016/j.biotechadv.2021.107730
Liu B, Westman Z, Richardson K, et al. Polyurethane Foam Chemical Recycling: Fast Acidolysis with Maleic Acid and Full Recovery of Polyol. ACS Sustainable Chemistry & Engineering 2024;12(11):4435-4443. doi: 10.1021/acssuschemeng.3c07040
Černá T, Pražanová K, Beneš H, et al. Polycyclic aromatic hydrocarbon accumulation in aged and unaged polyurethane microplastics in contaminated soil. Science of the Total Environment 2021;770:145254. doi: 10.1016/j.scitotenv.2021.145254
Dinani FSH, Baradaran A, Ebrahimpour K. Acute toxic effects of polyurethane microplastics on adult Zebra fish (Danio rerio). International Journal of Environmental Health Engineering 2021;10(1):9. doi: 10.4103/ijehe.ijehe_12_21
Hamilton BM, Jantunen LM, Rochman CM. Polyurethane microplastics and associated tris (chloropropyl) phosphate additives both affect development in larval fathead minnow Pimephales promelas. Environmental Toxicology and Chemistry 2025;44(2):460-469. doi: 10.1093/etojnl/vgae040
Albergamo V, Wohlleben W, Plata DL. Photochemical weathering of polyurethane microplastics produced complex and dynamic mixtures of dissolved organic chemicals. Environmental Science: Processes & Impacts 2023;25(3):432-444. doi: 10.1039/D2EM00415A
Shi Y, Zheng L, Huang H, et al. Formation of nano-and microplastics and dissolved chemicals during photodegradation of polyester base fabrics with polyurethane coating. Environmental Science & Technology 2023;57(5):1894-1906. doi: 10.1021/acs.est.2c05063
Zhao M, Li Y, Li C, et al. Effects of polyurethane microplastics combined with cadmium on maize growth and cadmium accumulation under different long-term fertilisation histories. Journal of Hazardous Materials 2024;473:134726. doi: 10.1016/j.jhazmat.2024.134726
Zhang P, Huang P, Sun H, Ma J, Li B. The structure of agricultural microplastics (PT, PU and UF) and their sorption capacities for PAHs and PHE derivates under various salinity and oxidation treatments. Environmental pollution 2020;257:113525. doi: 10.1016/j.envpol.2019.113525
Rutkowska M, Krasowska K, Heimowska A, Steinka I, Janik H. Degradation of polyurethanes in sea water. Polymer degradation and Stability 2002;76(2):233-239. doi: 10.1016/S0141-3910(02)00019-8
Gama N, Godinho B, Marques G, Silva R, Barros-Timmons A, Ferreira A. Recycling of polyurethane scraps via acidolysis. Chemical Engineering Journal 2020;395:125102. doi: 10.1016/j.cej.2020.125102
Frienkel S. Plastics: A Toxic Love Story. New York: Henry Holt, 2011. cited 2020;6:22.
Asgher M, Arshad S, Qamar SA, Khalid N. Improved biosurfactant production from Aspergillus niger through chemical mutagenesis: characterization and RSM optimization. SN Applied Sciences 2020;2:1-11. doi: 10.1007/s42452-020-2783-3
Evode N, Qamar SA, Bilal M, Barceló D, Iqbal HM. Plastic waste and its management strategies for environmental sustainability. Case Studies in Chemical and Environmental Engineering 2021;4:100142. doi: 10.1016/j.cscee.2021.100142
Mullins M, Liu D, Sue H-J. Mechanical properties of thermosets. Thermosets. Elsevier; 2018:35-68. doi: 10.1016/B978-0-08-101021-1.00002-2
Vinayagamoorthy R, Rajmohan T. Machining and its challenges on bio-fibre reinforced plastics: A critical review. Journal of Reinforced Plastics and Composites 2018;37(16):1037-1050. doi: 10.1177/0731684418778356
Hale RC, Seeley ME, La Guardia MJ, Mai L, Zeng EY. A global perspective on microplastics. Journal of Geophysical Research: Oceans 2020;125(1):e2018JC014719. doi: 10.1029/2018JC014719
Andrady AL. The plastic in microplastics: A review. Marine pollution bulletin 2017;119(1):12-22. doi: 10.1016/j.marpolbul.2017.01.082
Tirkey A, Upadhyay LSB. Microplastics: An overview on separation, identification and characterization of microplastics. Marine pollution bulletin 2021;170:112604. doi: 10.1016/j.marpolbul.2021.112604
Bhavsar P, Bhave M, Webb HK. Solving the plastic dilemma: the fungal and bacterial biodegradability of polyurethanes. World Journal of Microbiology and Biotechnology 2023;39(5):122. doi: 10.1007/s11274-023-03558-8
Weis JS, Alava JJ. (Micro) plastics are toxic pollutants. Toxics 2023;11(11):935. doi: 10.3390/toxics11110935
Dissanayake PD, Kim S, Sarkar B, et al. Effects of microplastics on the terrestrial environment: a critical review. Environmental Research 2022;209:112734. doi: 10.1016/j.envres.2022.112734
Akindoyo JO, Beg M, Ghazali S, Islam M, Jeyaratnam N, Yuvaraj A. Polyurethane types, synthesis and applications-a review. Rsc Advances 2016;6(115):114453-114482. doi: 10.1039/C6RA14525F
De Souza FM, Kahol PK, Gupta RK. Introduction to polyurethane chemistry. Polyurethane chemistry: Renewable polyols and isocyanates. ACS Publications; 2021:1-24. doi: 10.1021/bk-2021-1380.ch001
Zaimoglu AS. Freezing-thawing behavior of fine-grained soils reinforced with polypropylene fibers. Cold regions science and technology 2010;60(1):63-65. doi: 10.1016/j.coldregions.2009.07.001
Giamundo V, Lignola GP, Prota A, Manfredi G. Nonlinear analyses of adobe masonry walls reinforced with fiberglass mesh. Polymers 2014;6(2):464-478. doi: 10.3390/polym6020464
Khan S, Nadir S, Shah ZU, et al. Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environmental pollution 2017;225:469-480. doi: 10.1016/j.envpol.2017.03.012
Mathur G, Prasad R. Degradation of polyurethane by Aspergillus flavus (ITCC 6051) isolated from soil. Applied biochemistry and biotechnology 2012;167:1595-1602. doi: 10.1007/s12010-012-9572-4
Borucka M, Mizera K, Przybysz J, Kozikowski P, Gajek A. Analysis of flammability and smoke emission of plastic materials used in construction and transport. Materials 2023;16(6):2444. doi: 10.3390/ma16062444
Liu J, Wang Y, Zheng X, Zhou Q, Lei X. The reuse of polyurethane wastes. New Chemical Materials 2010;38(12):21-23.
Fukaya T, Watando H, Fujieda S, Saya S, Thai CM, Yamamoto M. Reheating decomposition process as chemical recycling for rigid polyurethane foam. Polymer degradation and stability 2006;91(11):2549-2553. doi: 10.1016/j.polymdegradstab.2006.05.011
Coralli I, Goßmann I, Fabbri D, Scholz-Böttcher BM. Determination of polyurethanes within microplastics in complex environmental samples by analytical pyrolysis. Analytical and Bioanalytical Chemistry 2023;415(15):2891-2905. doi: 10.1007/s00216-023-04580-3
Wu H, Zhong M, Lu Z, et al. Biological effects of tris (1-chloro-2-propyl) phosphate (TCPP) on immunity in mussel Mytilus galloprovincialis. Environmental Toxicology and Pharmacology 2018;61:102-106. doi: 10.1016/j.etap.2018.05.022
Gorguner M, Akgun M. Acute inhalation injury. The Eurasian journal of medicine 2010;42(1):28. doi: 10.5152/eajm.2010.09
Mallouhi J, Hornyák-Mester E, Varga M, Viskolcz B, Fiser B, Szőri-Dorogházi E. Development of toxicity tests for Polyurethane foams. Heliyon 2024;10(19) doi: 10.1016/j.heliyon.2024.e38440
Simón D, Borreguero A, De Lucas A, Rodríguez J. Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability. Waste Management 2018;76:147-171. doi: 10.1016/j.wasman.2018.03.041
Zia KM, Bhatti HN, Bhatti IA. Methods for polyurethane and polyurethane composites, recycling and recovery: A review. Reactive and functional polymers 2007;67(8):675-692. doi: 10.1016/j.reactfunctpolym.2007.05.004
Lee Y-H, Kang B-K, Kim H-D, et al. Effect of hot pressing/melt mixing on the properties of thermoplastic polyurethane. Macromolecular Research 2009;17:616-622. doi: 10.1007/BF03218918
Calvo-Correas T, Benitez M, Larraza I, Ugarte L, Peña-Rodríguez C, Eceiza A. Advanced and traditional processing of thermoplastic polyurethane waste. Polymer Degradation and Stability 2022;198:109880. doi: 10.1016/j.polymdegradstab.2022.109880
Hulme A, Goodhead T. Cost effective reprocessing of polyurethane by hot compression moulding. Journal of materials processing technology 2003;139(1-3):322-326. doi: 10.1016/S0924-0136(03)00548-X
Lu G, Ding Y, Zhao C, Cui D. Research development of chemical method recovery waste polyurethane at home and aboard. Chemical Engineer 2004;109(10):45-51.
Yang W, Dong Q, Liu S, Xie H, Liu L, Li J. Recycling and disposal methods for polyurethane foam wastes. Procedia Environmental Sciences 2012;16:167-175. doi: 10.1016/j.proenv.2012.10.023
Al-Salem S, Lettieri P, Baeyens J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste management 2009;29(10):2625-2643. doi: 10.1016/j.wasman.2009.06.004
Dai Z, Hatano B, Kadokawa J-i, Tagaya H. Effect of diaminotoluene on the decomposition of polyurethane foam waste in superheated water. Polymer Degradation and Stability 2002;76(2):179-184. doi: 10.1016/S0141-3910(02)00010-1
Motokucho S, Nakayama Y, Morikawa H, Nakatani H. Environment‐friendly chemical recycling of aliphatic polyurethanes by hydrolysis in a CO 2‐water system. Journal of Applied Polymer Science 2018;135(8):45897. doi: 10.1002/app.45897
Datta J, Janicka M. Synthesis and properties of polyurethanes made of secondary raw materials. Przemysl Chemiczny 2007;86(7):624-626.
He H, Su H, Yu H, et al. Chemical Recycling of Waste Polyurethane Foams: Efficient Acidolysis under the Catalysis of Zinc Acetate. ACS Sustainable Chemistry & Engineering 2023;11(14):5515-5523. doi: 10.1021/acssuschemeng.2c07260
Nikje MMA, Mohammadi FHA. Sorbitol/glycerin/water ternary system as a novel glycolysis agent for flexible polyurethane foam in the chemical recycling using microvawe radiation. Polimery 2009;54(7-8):541-545. doi: 10.14314/polimery.2009.541
Nikje MMA, Nikrah M, Mohammadi FHA. Microwave-assisted polyurethane bond cleavage via hydroglycolysis process at atmospheric pressure. Journal of cellular plastics 2008;44(5):367-380. doi: 10.1177/0021955X08090279
Datta J, Pniewska K. Syntheses and properties of polyurethanes got from glycolysis products obtained from waste polyurethane foams. Polimery 2008;53(1):27-32. doi: 10.14314/polimery.2008.027
Rossignolo G, Malucelli G, Lorenzetti A. Recycling of polyurethanes: where we are and where we are going. Green Chemistry 2024;26(3):1132-1152. doi: 10.1039/D3GC02091F
Malucelli G, Lorenzetti A. Sustainability in polyurethanes: old hat or new strategy for future developments? npj Materials Sustainability 2025;3(1):20. doi: 10.1038/s44296-025-00064-w
Li X. Comparative study on pyrolysis character of waste plastic between hard and soft polyurethanes. Harbin Institute of Technology 2006;
Weigand E, Wagner J, Waltenberger G. Energy recovery from polyurethanes in industrial power plants. Abfall Journal 1996;3:40-45.
Published
Issue
Section
License
The Copyright Form should be downloaded and signed by corresponding author in the fourth step "upload supplementary files" during submission process.
After acceptance, copyright form should be downloaded and signed by all authors one by one ( "summery --> supp. file" part and click on "add a supplementary file" link).
https://orcid.org/0000-0002-7626-9300

