Impact of Circadian Disruption on CART mRNA Expression in Nucleus Accumbent: Insights from Constant Light Exposure and Wheel-Running Activity in Rats
DOI:
https://doi.org/10.22100/sjms.v11i3.1189Keywords:
Neuropeptide CART, Circadian rhythm, Nucleus accumbens, Wheel runningAbstract
Background: Cocaine Amphetamine Related Transcript (CART) is expressed in the nucleus accumbens (NAc), a region that serves as extra-SCN circadian oscillators. This study examined whether CART mRNA in the NAc follows a diurnal rhythm and how circadian disruption affects its expression.
Methods: Rats (n=28) were monitored for 30 days in a 12:12 light-dark cycle (LD). On day 30, 14 rats were sacrificed (7 in the morning, 7 in the evening). The remaining rats (n=14) were exposed to constant light (LL) from day 30 to day 60 and then sacrificed (7 in the morning, 7 in the evening). CART mRNA levels were measured via real-time PCR.
Results: In the LD group, CART mRNA was higher in the evening than in the morning (P-value<0.001). In the LL group, evening levels remained elevated but were reduced compared to LD (P-value<0.01). Morning mRNA levels in the LL group were lower than in LD (P-value<0.05).
Conclusions: Constant light exposure downregulated CART mRNA, suggesting impaired circadian regulation in the NAc. This disruption may alter neurochemical signaling, affecting behavioral and mood-related processes. The findings highlight CART’s role in circadian coordination and its susceptibility to rhythm disturbances, which could influence mood and activity patterns.
References
Spiess J, Villarreal J, Vale W. Isolation and sequence analysis of a somatostatin-like polypeptide from ovine hypothalamus. Biochemistry. 1981;20(7):1982-1988. doi: 10.1021/bi00510a038
Douglass J, McKinzie AA, Couceyro P. PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine. Journal of Neuroscience. 1995;15(3):2471-2481. doi: 10.1523/JNEUROSCI.15-03-02471.1995
Kuhar MJ, Vechia SED. CART peptides: novel addiction-and feeding-related neuropeptides. Trends in neurosciences. 1999;22(7):316-320. doi: 10.1016/S0166-2236(98)01377-0
Vicentic A, Lakatos A, Jones D. The CART receptors: background and recent advances. Peptides. 2006;27(8):1934-1937. doi: 10.1016/j.peptides.2006.03.031
Bakhtazad A, Vousooghi N, Garmabi B, Zarrindast MR. Evaluation of CART peptide level in rat plasma and CSF: Possible role as a biomarker in opioid addiction. Peptides. 2016;84:1-6. doi: 10.1016/j.peptides.2016.06.010
Philpot K, Smith Y. CART peptide and the mesolimbic dopamine system. Peptides. 2006;27(8):1987-1992. doi: 10.1016/j.peptides.2005.11.028
Méndez-Díaz M, Martín ED, Morales MP, Ruiz-Contreras A, Navarro L, Prospéro-García O. The anorexigenic peptide cocaine-and-amphetamine-regulated transcript modulates rem-sleep in rats. Neuropeptides. 2009;43(6):499-505. doi: 10.1016/j.npep.2009.08.004
Stanek LM. Cocaine-and amphetamine related transcript (CART) and anxiety. Peptides. 2006;27(8):2005-2011. doi: 10.1016/j.peptides.2006.01.027
Keating GL, Kuhar MJ, Bliwise DL, Rye DB. Wake promoting effects of cocaine and amphetamine-regulated transcript (CART). Neuropeptides. 2010;44(3):241-246. doi: 10.1016/j.npep.2009.12.013
Ahmadian-Moghadam H, Sadat-Shirazi M-S, Zarrindast M-R. Cocaine-and amphetamine-regulated transcript (CART): a multifaceted neuropeptide. Peptides. 2018;110:56-77. doi: 10.1016/j.peptides.2018.10.008
Hurd YL, Fagergren P. Human cocaine‐and amphetamine‐regulated transcript (CART) mRNA is highly expressed in limbic‐and sensory‐related brain regions. Journal of Comparative Neurology. 2000;425(4):583-598. doi: 10.1002/1096-9861(20001002)425:4<583::AID-CNE8>3.0.CO;2-#
Dibner C, Schibler U, Albrecht UJArop. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. 2010;72(1):517-549. doi: 10.1146/annurev-physiol-021909-135821
Begemann K, Neumann AM, Oster HJAp. Regulation and function of extra‐SCN circadian oscillators in the brain. 2020;229(1):e13446. doi: 10.1111/apha.13446
Becker-Krail DD, Walker WH, Nelson RJJFiP. The ventral tegmental area and nucleus accumbens as circadian oscillators: implications for drug abuse and substance use disorders. 2022;13:886704. doi: 10.3389/fphys.2022.886704
Parekh PK, Becker-Krail D, Sundaravelu P, et al. Altered GluA1 (Gria1) Function and Accumbal Synaptic Plasticity in the ClockΔ19 Model of Bipolar Mania. Biological psychiatry. Dec 1 2018;84(11):817-826. doi: 10.1016/j.biopsych.2017.06.022
Alonso IP, Pino JA, Kortagere S, Torres GE, España RA. Dopamine transporter function fluctuates across sleep/wake state: potential impact for addiction. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. Mar 2021;46(4):699-708. doi: 10.1038/s41386-020-00879-2
Landgraf D, Long JE, Welsh DK. Depression-like behaviour in mice is associated with disrupted circadian rhythms in nucleus accumbens and periaqueductal grey. The European journal of neuroscience. May 2016;43(10):1309-20. doi: 10.1111/ejn.13085
Logan RW, Edgar N, Gillman AG, Hoffman D, Zhu X, McClung CA. Chronic Stress Induces Brain Region-Specific Alterations of Molecular Rhythms that Correlate with Depression-like Behavior in Mice. Biological psychiatry. Aug 15 2015;78(4):249-58. doi: 10.1016/j.biopsych.2015.01.011
Becker-Krail DD, Ketchesin KD, Burns JN, et al. Astrocyte molecular clock function in the nucleus accumbens is important for reward-related behavior. 2022;92(1):68-80. doi: 10.1016/j.biopsych.2022.02.007
Hubert G, Manvich D, Kuhar M. Cocaine and amphetamine-regulated transcript-containing neurons in the nucleus accumbens project to the ventral pallidum in the rat and may inhibit cocaine-induced locomotion. Neuroscience. 2010;165(1):179-187. doi: 10.1016/j.neuroscience.2009.10.013
Jean A, Conductier G, Manrique C, et al. Anorexia induced by activation of serotonin 5-HT4 receptors is mediated by increases in CART in the nucleus accumbens. Proceedings of the National Academy of Sciences. 2007;104(41):16335-16340. doi: 10.1073/pnas.0701471104
Salinas A, Wilde JD, Maldve RE. Ethanol enhancement of cocaine‐and amphetamine‐regulated transcript mRNA and peptide expression in the nucleus accumbens. Journal of neurochemistry. 2006;97(2):408-415. doi: 10.1111/j.1471-4159.2006.03745.x
Hubert G, Kuhar M. Cocaine administration increases the fraction of CART cells in the rat nucleus accumbens that co-immunostain for c-Fos. Neuropeptides. 2008;42(3):339-343. doi: 10.1016/j.npep.2008.01.001
Bakhtazad A, Vousooghi N, Nasehi M, Sanadgol N, Garmabi B, Zarrindast MR. The effect of microinjection of CART 55-102 into the nucleus accumbens shell on morphine-induced conditioned place preference in rats: Involvement of the NMDA receptor. Peptides. 2020;129:170319. doi: 10.1016/j.peptides.2020.170319
Awathale SN, Choudhary AG, Subhedar NK, Kokare DM. Neuropeptide CART modulates dopamine turnover in the nucleus accumbens: Insights into the anatomy of rewarding circuits. Journal of Neurochemistry. 2021;158(5):1172-1185. doi: 10.1111/jnc.15479
Fu Q, Zhou X, Dong Y, et al. Decreased caffeine-induced locomotor activity via microinjection of CART peptide into the nucleus accumbens is linked to inhibition of the pCaMKIIa-D3R interaction. Plos one. 2016;11(7):e0159104. doi: 10.1371/journal.pone.0159104
Jaworski JN, Hansen ST, Kuhar MJ, Mark GP. Injection of CART (cocaine-and amphetamine-regulated transcript) peptide into the nucleus accumbens reduces cocaine self-administration in rats. Behavioural brain research. 2008;191(2):266-271. doi: 10.1016/j.bbr.2008.03.039
Armbruszt S, Figler M, Ábrahám H. Stability of CART peptide expression in the nucleus accumbens in aging. Acta Biologica Hungarica. 2015;66(1):1-13. doi: 10.1556/ABiol.66.2015.1.1
Vicentic A, Dominguez G, Hunter R, Philpot K, Wilson M, Kuhar M. Cocaine-and amphetamine-regulated transcript peptide levels in blood exhibit a diurnal rhythm: regulation by glucocorticoids. Endocrinology. 2004;145(9):4119-4124. doi: 10.1210/en.2003-1648
Baldo BA, Hanlon EC, Obermeyer W, Bremer Q, Paletz E, Benca RM. Upregulation of gene expression in reward-modulatory striatal opioid systems by sleep loss. Neuropsychopharmacology. 2013;38(13):2578-2587. doi: 10.1038/npp.2013.174
Rea MS, Figueiro MG. Quantifying light-dependent circadian disruption in humans and animal models. Chronobiology International. 2014/12/01 2014;31(10):1239-1246. doi: 10.3109/07420528.2014.957302
Rafaiee R, Mohseni FJJoME, Medicine Ho. Ethical considerations and challenges associated with euthanasia in laboratory animal research. 2024;17. doi: 10.18502/jmehm.v17i11.18663
Morimoto Y, Oishi T, Arisue K, Yamamura Y. Effect of food restriction and its withdrawal on the circadian adrenocortical rhythm in rats under constant dark or constant lighting condition. Neuroendocrinology. 1979;29(2):77-83. doi: 10.1159/000122908
Bakhtazad A, Vousooghi N, Garmabi B, Zarrindast M. CART peptide and opioid addiction: expression changes in male rat brain. Neuroscience. 2016;325:63-73. doi: 10.1016/j.neuroscience.2016.02.071
Garmabi B, Vousooghi N, Vosough M, Yoonessi A, Bakhtazad A, Zarrindast M. Effect of circadian rhythm disturbance on morphine preference and addiction in male rats: involvement of period genes and dopamine D1 receptor. Neuroscience. 2016;322:104-114. doi: 10.1016/j.neuroscience.2016.02.019
Bakhtazad A, Vousooghi N, Garmabi B, Zarrindast MR. Evaluation of the CART peptide expression in morphine sensitization in male rats. European journal of pharmacology. 2017;802:52-59. doi: 10.1016/j.ejphar.2017.02.040
Pathak SS, Liu D, Li T, et al. The eIF2α kinase GCN2 modulates period and rhythmicity of the circadian clock by translational control of Atf4. 2019;104(4):724-735. e6. doi: 10.1016/j.neuron.2019.08.007
Oneda S, Cao S, Haraguchi A, Sasaki H, Shibata SJFiP. Wheel-running facilitates phase advances in locomotor and peripheral circadian rhythm in social jet lag model mice. 2022;13:821199. doi: 10.3389/fphys.2022.821199
Mohammadi S, Zahmatkesh M, Asgari Y, Aminyavari S, Hassanzadeh G. Evaluation of hippocampal arylalkylamine N-acetyltransferase activity in amyloid-β neurotoxicity. Journal of molecular endocrinology. Aug 1 2023;71(2). doi: 10.1530/JME-22-0161
Orsetti M, Di Brisco F, Canonico PL, Genazzani AA, Ghi P. Gene regulation in the frontal cortex of rats exposed to the chronic mild stress paradigm, an animal model of human depression. The European journal of neuroscience. Apr 2008;27(8):2156-64. doi: 10.1111/j.1460-9568.2008.06155.x
Roh MS, Cui FJ, Ahn YM, Kang UG. Up-regulation of cocaine- and amphetamine-regulated transcript (CART) in the rat nucleus accumbens after repeated electroconvulsive shock. Neuroscience research. Oct 2009;65(2):210-3. doi: 10.1016/j.neures.2009.06.013
Dandekar MP, Singru PS, Kokare DM, Subhedar NK. Cocaine- and amphetamine-regulated transcript peptide plays a role in the manifestation of depression: social isolation and olfactory bulbectomy models reveal unifying principles. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. Apr 2009;34(5):1288-300. doi: 10.1038/npp.2008.201
Funayama Y, Li H, Ishimori E, et al. Antidepressant Response and Stress Resilience Are Promoted by CART Peptides in GABAergic Neurons of the Anterior Cingulate Cortex. Biological psychiatry global open science. Jan 2023;3(1):87-98. doi: 10.1016/j.bpsgos.2021.12.009
Hart J. Rodents. Mammals. Elsevier; 1971:1-149. doi: 10.1016/B978-0-12-747602-5.50007-1
Becker-Krail DD, Walker WH, Nelson RJ. The Ventral Tegmental Area and Nucleus Accumbens as Circadian Oscillators: Implications for Drug Abuse and Substance Use Disorders. Frontiers in Physiology. 2022:762. doi: 10.3389/fphys.2022.886704
Alonso I, Pino J, Kortagere S, Torres G, España R. Dopamine transporter function fluctuates across sleep/wake state: potential impact for addiction. Neuropsychopharmacology. 2021;46(4):699-708. doi: 10.1038/s41386-020-00879-2
Koch C, Begemann K, Kiehn J, et al. Circadian regulation of hedonic appetite in mice by clocks in dopaminergic neurons of the VTA. Nature communications. 2020;11(1):1-11. doi: 10.1038/s41467-020-16882-6
Ferris MJ, España RA, Locke JL, et al. Dopamine transporters govern diurnal variation in extracellular dopamine tone. Proceedings of the National Academy of Sciences. 2014;111(26):E2751-E2759. doi: 10.1073/pnas.1407935111
Castaneda TR, de Prado BM, Prieto D, Mora F. Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light. Journal of pineal research. 2004;36(3):177-185. doi: 10.1046/j.1600-079X.2003.00114.x
Porcu A, Vaughan M, Nilsson A, Arimoto N, Lamia K, Welsh DK. Vulnerability to helpless behavior is regulated by the circadian clock component CRYPTOCHROME in the mouse nucleus accumbens. Proceedings of the National Academy of Sciences. 2020;117(24):13771-13782. doi: 10.1073/pnas.2000258117
Falcon E, Ozburn A, Mukherjee S, Roybal K, McClung CA. Differential regulation of the period genes in striatal regions following cocaine exposure. PLoS One. 2013;8(6):e66438. doi: 10.1371/journal.pone.0066438
Becker‐Krail DD, Parekh PK, Ketchesin KD, et al. Circadian transcription factor NPAS2 and the NAD+‐dependent deacetylase SIRT1 interact in the mouse nucleus accumbens and regulate reward. European Journal of Neuroscience. 2022;55(3):675-693. doi: 10.1111/ejn.15596
Ketchesin KD, Zong W, Hildebrand MA, et al. Diurnal rhythms across the human dorsal and ventral striatum. Proceedings of the National Academy of Sciences. 2021;118(2):e2016150118. doi: 10.1073/pnas.2016150118
Li JZ, Bunney BG, Meng F, et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proceedings of the National Academy of Sciences. 2013;110(24):9950-9955. doi: 10.1073/pnas.1305814110
Becker-Krail DD, Ketchesin KD, Burns JN, et al. Astrocyte Molecular Clock Function in the Nucleus Accumbens Is Important for Reward-Related Behavior. Biological Psychiatry. 2022. doi: 10.1016/j.biopsych.2022.02.007
Vicentic A, Lakatos A, Hunter R, Philpot K, Dominguez G, Kuhar MJ. CART peptide diurnal rhythm in brain and effect of fasting. Brain research. 2005;1032(1-2):111-115. doi: 10.1016/j.brainres.2004.10.053
Dominguez G, Lakatos A, Kuhar MJ. Characterization of the cocaine‐and amphetamine‐regulated transcript (CART) peptide gene promoter and its activation by a cyclic AMP‐dependent signaling pathway in GH3 cells. Journal of neurochemistry. 2002;80(5):885-893. doi: 10.1046/j.0022-3042.2002.00775.x
Gekakis N, Staknis D, Nguyen HB, et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science. 1998;280(5369):1564-1569. doi: 10.1126/science.280.5369.1564
Vicentic A, Lakatos A, Hunter R, Philpot K, Dominguez G, Kuhar MJ. CART peptide diurnal rhythm in brain and effect of fasting. Brain research. Jan 25 2005;1032(1-2):111-5. doi: 10.1016/j.brainres.2004.10.053
Jaworski JN, Vicentic A, Hunter RG, Kimmel HL, Kuhar MJ. CART peptides are modulators of mesolimbic dopamine and psychostimulants. Life sciences. Jun 27 2003;73(6):741-7. doi: 10.1016/S0024-3205(03)00394-1
Abarca C, Albrecht U, Spanagel R. Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proceedings of the National Academy of Sciences of the United States of America. Jun 25 2002;99(13):9026-30. doi: 10.1073/pnas.142039099
Nikaido T, Akiyama M, Moriya T, Shibata S. Sensitized increase of period gene expression in the mouse caudate/putamen caused by repeated injection of methamphetamine. Molecular pharmacology. Apr 2001;59(4):894-900. doi: 10.1016/S0026-895X(24)09259-9
Elimam A, Marcus C. Meal timing, fasting and glucocorticoids interplay in serum leptin concentrations and diurnal profile. European journal of endocrinology. Aug 2002;147(2):181-8. doi: 10.1530/eje.0.1470181
Dominguez G, Lakatos A, Kuhar MJ. Characterization of the cocaine- and amphetamine-regulated transcript (CART) peptide gene promoter and its activation by a cyclic AMP-dependent signaling pathway in GH3 cells. Journal of neurochemistry. Mar 2002;80(5):885-93. doi: 10.1046/j.0022-3042.2002.00775.x
Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides. 1996;17(2):305-11. doi: 10.1016/0196-9781(96)00025-3
Wanlong Z, Di Z, Dongmin H, Guang YJTEZJ. Roles of hypothalamic neuropeptide gene expression in body mass regulation in Eothenomys miletus (Mammalia: Rodentia: Cricetidae). 2017;84(1):322-333. doi: 10.1080/24750263.2017.1334840
Kristensen P, Judge ME, Thim L, et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature. May 7 1998;393(6680):72-6. doi: 10.1038/29993
Lambert PD, Couceyro PR, McGirr KM, Dall Vechia SE, Smith Y, Kuhar MJ. CART peptides in the central control of feeding and interactions with neuropeptide Y. Synapse (New York, NY). Aug 1998;29(4):293-8. doi: 10.1002/(SICI)1098-2396(199808)29:4<293::AID-SYN1>3.0.CO;2-0
Asnicar MA, Smith DP, Yang DD, et al. Absence of cocaine- and amphetamine-regulated transcript results in obesity in mice fed a high caloric diet. Endocrinology. Oct 2001;142(10):4394-400. doi: 10.1210/en.142.10.4394
Wierup N, Richards WG, Bannon AW, Kuhar MJ, Ahrén B, Sundler F. CART knock out mice have impaired insulin secretion and glucose intolerance, altered beta cell morphology and increased body weight. Regulatory peptides. Jul 15 2005;129(1-3):203-11. doi: 10.1016/j.regpep.2005.02.016
Skibicka KP, Alhadeff AL, Grill HJ. Hindbrain cocaine- and amphetamine-regulated transcript induces hypothermia mediated by GLP-1 receptors. The Journal of neuroscience : the official journal of the Society for Neuroscience. May 27 2009;29(21):6973-81. doi: 10.1523/JNEUROSCI.6144-08.2009
Lee SJ, Krieger JP, Vergara M, et al. Blunted Vagal Cocaine- and Amphetamine-Regulated Transcript Promotes Hyperphagia and Weight Gain. Cell reports. Feb 11 2020;30(6):2028-2039.e4. doi: 10.1016/j.celrep.2020.01.045
Bray MS, Young ME. Circadian rhythms in the development of obesity: potential role for the circadian clock within the adipocyte. Obesity reviews : an official journal of the International Association for the Study of Obesity. Mar 2007;8(2):169-81. doi: 10.1111/j.1467-789X.2006.00277.x
Broussard JL, Van Cauter E. Disturbances of sleep and circadian rhythms: novel risk factors for obesity. Current opinion in endocrinology, diabetes, and obesity. Oct 2016;23(5):353-9. doi: 10.1097/MED.0000000000000276
Rácz B, Dušková M, Stárka L, Hainer V, Kunešová M. Links between the circadian rhythm, obesity and the microbiome. Physiological research. Nov 28 2018;67(Suppl 3):S409-s420. doi: 10.33549/physiolres.934020
Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science (New York, NY). May 13 2005;308(5724):1043-5. doi: 10.1126/science.1108750
Published
Issue
Section
License
The Copyright Form should be downloaded and signed by corresponding author in the fourth step "upload supplementary files" during submission process.
After acceptance, copyright form should be downloaded and signed by all authors one by one ( "summery --> supp. file" part and click on "add a supplementary file" link).